Prediction of protein solvent accessibility using fuzzy k-nearest neighbor method
نویسندگان
چکیده
MOTIVATION The solvent accessibility of amino acid residues plays an important role in tertiary structure prediction, especially in the absence of significant sequence similarity of a query protein to those with known structures. The prediction of solvent accessibility is less accurate than secondary structure prediction in spite of improvements in recent researches. The k-nearest neighbor method, a simple but powerful classification algorithm, has never been applied to the prediction of solvent accessibility, although it has been used frequently for the classification of biological and medical data. RESULTS We applied the fuzzy k-nearest neighbor method to the solvent accessibility prediction, using PSI-BLAST profiles as feature vectors, and achieved high prediction accuracies. With leave-one-out cross-validation on the ASTRAL SCOP reference dataset constructed by sequence clustering, our method achieved 64.1% accuracy for a 3-state (buried/intermediate/exposed) prediction (thresholds of 9% for buried/intermediate and 36% for intermediate/exposed) and 86.7, 82.0, 79.0 and 78.5% accuracies for 2-state (buried/exposed) predictions (thresholds of each 0, 5, 16 and 25% for buried/exposed), respectively. Our method also showed slightly better accuracies than other methods by about 2-5% on the RS126 dataset and a benchmarking dataset with 229 proteins. AVAILABILITY Program and datasets are available at http://biocom1.ssu.ac.kr/FKNNacc/ CONTACT [email protected].
منابع مشابه
FUZZY K-NEAREST NEIGHBOR METHOD TO CLASSIFY DATA IN A CLOSED AREA
Clustering of objects is an important area of research and application in variety of fields. In this paper we present a good technique for data clustering and application of this Technique for data clustering in a closed area. We compare this method with K-nearest neighbor and K-means.
متن کاملSann: solvent accessibility prediction of proteins by nearest neighbor method.
We present a method to predict the solvent accessibility of proteins which is based on a nearest neighbor method applied to the sequence profiles. Using the method, continuous real-value prediction as well as two-state and three-state discrete predictions can be obtained. The method utilizes the z-score value of the distance measure in the feature vector space to estimate the relative contribut...
متن کاملLiquid-liquid equilibrium data prediction using large margin nearest neighbor
Guanidine hydrochloride has been widely used in the initial recovery steps of active protein from the inclusion bodies in aqueous two-phase system (ATPS). The knowledge of the guanidine hydrochloride effects on the liquid-liquid equilibrium (LLE) phase diagram behavior is still inadequate and no comprehensive theory exists for the prediction of the experimental trends. Therefore the effect the ...
متن کاملProfiles and fuzzy K-nearest neighbor algorithm for protein secondary structure prediction
We introduce a new approach for predicting the secondary structure of proteins using profiles and the Fuzzy K-Nearest Neighbor algorithm. K-Nearest Neighbor methods give relatively better performance than Neural Networks or Hidden Markov models when the query protein has few homologs in the sequence database to build sequence profile. Although the traditional K-Nearest Neighbor algorithms are a...
متن کاملDrought Monitoring and Prediction using K-Nearest Neighbor Algorithm
Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 21 12 شماره
صفحات -
تاریخ انتشار 2005